Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Cell Genom ; 4(4): 100540, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38604125

RESUMEN

Mechanisms underlying phenotypic divergence across species remain unresolved. In this issue of Cell Genomics, Hansen, Fong, et al.1 systematically dissect human and rhesus macaque gene expression divergence by screening tens of thousands of orthologous elements for enhancer activity in lymphoblastoid cell lines, revealing a much greater role for trans divergence at levels equal to those of cis effects, counter to the prevailing consensus in the field.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica , Animales , Humanos , Macaca mulatta/genética , Secuencias Reguladoras de Ácidos Nucleicos , Genómica
2.
Curr Biol ; 30(19): R1215-R1231, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33022266

RESUMEN

The ability to sequence genomes from ancient biological material has provided a rich source of information for evolutionary biology and engaged considerable public interest. Although most studies of ancient genomes have focused on vertebrates, particularly archaic humans, newer technologies allow the capture of microbial pathogens and microbiomes from ancient and historical human and non-human remains. This coming of age has been made possible by techniques that allow the preferential capture and amplification of discrete genomes from a background of predominantly host and environmental DNA. There are now near-complete ancient genome sequences for three pathogens of considerable historical interest - pre-modern bubonic plague (Yersinia pestis), smallpox (Variola virus) and cholera (Vibrio cholerae) - and for three equally important endemic human disease agents - Mycobacterium tuberculosis (tuberculosis), Mycobacterium leprae (leprosy) and Treponema pallidum pallidum (syphilis). Genomic data from these pathogens have extended earlier work by paleopathologists. There have been efforts to sequence the genomes of additional ancient pathogens, with the potential to broaden our understanding of the infectious disease burden common to past populations from the Bronze Age to the early 20th century. In this review we describe the state-of-the-art of this rapidly developing field, highlight the contributions of ancient pathogen genomics to multidisciplinary endeavors and describe some of the limitations in resolving questions about the emergence and long-term evolution of pathogens.


Asunto(s)
Bacterias/patogenicidad , ADN Antiguo/análisis , ADN Bacteriano/genética , Animales , Bacterias/genética , Evolución Biológica , Evolución Molecular , Genoma/genética , Genoma Bacteriano/genética , Genómica/métodos , Humanos , Microbiota/genética , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Filogenia , Treponema/genética , Virus de la Viruela/genética , Vibrio cholerae/genética , Yersinia pestis/genética
3.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190582, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33012236

RESUMEN

As one of the oldest known human diseases, leprosy or Hansen's disease remains a public health concern around the world with over 200 000 new cases in 2018. Most human leprosy cases are caused by Mycobacterium leprae, but a small number of cases are now known to be caused by Mycobacterium lepromatosis, a sister taxon of M. leprae. The global pattern of genomic variation in M. leprae is not well defined. Particularly, in the Pacific Islands, the origins of leprosy are disputed. Historically, it has been argued that leprosy arrived on the islands during nineteenth century colonialism, but some oral traditions and palaeopathological evidence suggest an older introduction. To address this, as well as investigate patterns of pathogen exchange across the Pacific Islands, we extracted DNA from 39 formalin-fixed paraffin-embedded biopsy blocks dating to 1992-2016. Using whole-genome enrichment and next-generation sequencing, we produced nine M. leprae genomes dating to 1998-2015 and ranging from 4-63× depth of coverage. Phylogenetic analyses indicate that these strains belong to basal lineages within the M. leprae phylogeny, specifically falling in branches 0 and 5. The phylogeographical patterning and evolutionary dating analysis of these strains support a pre-modern introduction of M. leprae into the Pacific Islands. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Asunto(s)
Evolución Biológica , Genoma Bacteriano , Lepra/microbiología , Mycobacterium leprae/genética , Filogeografía , Adolescente , Adulto , Anciano , Samoa Americana , Niño , Evolución Molecular , Femenino , Hawaii , Humanos , Masculino , Micronesia , Persona de Mediana Edad , Islas del Pacífico , Adulto Joven
4.
FEMS Microbiol Lett ; 367(11)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32407480

RESUMEN

Lineage-specific genes (LSGs) are defined as genes with sequences that are not significantly similar to those in any other lineage. LSGs have been proposed, and sometimes shown, to have significant effects in the evolution of biological function. In this study, two sets of Hanseniaspora spp. LSGs were identified by comparing the sequences of the Kloeckera apiculata genome and of 80 other yeast genomes. This study identified 344 Hanseniaspora-specific genes (HSGs) and 109 genes ('orphan genes') specific to K. apiculata. Three thousand three hundred thirty-one K. apiculata genes that showed significant similarity to at least one sequence outside the Hanseniaspora were classified into evolutionarily conserved genes. We analyzed their sequence features, functional categories, gene origin, gene structure and gene expression. We also investigated the predicted cellular roles and Gene Ontology categories of the LSGs using functional inference. The patterns of the functions of LSGs do not deviate significantly from genome-wide average. The results showed that a few LSGs were formed by gene duplication, followed by rapid sequence divergence. Many of the HSGs and orphan genes exhibited altered expression in response to abiotic stress. Studying these LSGs might be helpful for understanding the molecular mechanism of yeast adaption.


Asunto(s)
Genoma Fúngico , Hanseniaspora/genética , Evolución Molecular , Proteínas Fúngicas/genética , Duplicación de Gen , Expresión Génica , Hanseniaspora/clasificación , Filogenia , Especificidad de la Especie
5.
Acta Trop ; 197: 105041, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31152726

RESUMEN

Leprosy is an ancient disease caused by the acid-fast bacillus Mycobacterium leprae, also known as Hansen's bacillus. M. leprae is an obligate intracellular microorganism with a marked Schwann cell tropism and is the only human pathogen capable of invading the superficial peripheral nerves. The transmission mechanism of M. leprae is not fully understood; however, the nasal mucosa is accepted as main route of M. leprae entry to the human host. The complete sequencing and the comparative genome analysis show that M. leprae underwent a genome reductive evolution process, as result of lifestyle change and adaptation to different environments; some of lost genes are homologous to those of host cells. Thus, M. leprae reduced its genome size to 3.3 Mbp, contributing to obtain the lowest GC content (approximately 58%) among mycobacteria. The M. leprae genome contains 1614 open reading frames coding for functional proteins, and 1310 pseudogenes corresponding to 41% of the genome, approximately. Comparative analyses to different microorganisms showed that M. leprae possesses the highest content of pseudogenes among pathogenic and non-pathogenic bacteria and archaea. The pathogen adaptation into host cells, as the Schwann cells, brought about the reduction of the genome and induced multiple gene inactivation. The present review highlights the characteristics of genome's reductive evolution that M. leprae experiences in the genetic aspects compared with other pathogens. The possible mechanisms of pseudogenes formation are discussed.


Asunto(s)
Aclimatación/genética , Evolución Molecular , Lepra/microbiología , Mycobacterium leprae/genética , Mycobacterium leprae/fisiología , ADN Bacteriano , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Humanos
6.
J Clin Microbiol ; 57(8)2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31092597

RESUMEN

Many pathogens that caused devastating disease throughout human history, such as Yersinia pestis, Mycobacterium tuberculosis, and Mycobacterium leprae, remain problematic today. Historical bacterial genomes represent a unique source of genetic information and advancements in sequencing technologies have allowed unprecedented insights from this previously understudied resource. This minireview brings together example studies which have utilized ancient DNA, individual historical isolates (both extant and dead) and collections of historical isolates. The studies span human history and highlight the contribution that sequencing and analysis of historical bacterial genomes have made to a wide variety of fields. From providing retrospective diagnosis, to uncovering epidemiological pathways and characterizing genetic diversity, there is clear evidence for the utility of historical isolate studies in understanding disease today. Studies utilizing historical isolate collections, such as those from the National Collection of Type Cultures, the American Type Culture Collection, and the Institut Pasteur, offer enhanced insight since they typically span a wide time period encompassing important historical events and are useful for the investigating the phylodynamics of pathogens. Furthermore, historical sequencing studies are particularly useful for looking into the evolution of antimicrobial resistance, a major public health concern. In summary, although there are limitations to working with historical bacterial isolates, especially when utilizing ancient DNA, continued improvement in molecular and sequencing technologies and the resourcefulness of investigators mean this area of study will continue to expand and contribute to the understanding of pathogens.


Asunto(s)
Bacterias/genética , ADN Antiguo/análisis , Genoma Bacteriano , Análisis de Secuencia de ADN , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/patogenicidad , Farmacorresistencia Bacteriana Múltiple/genética , Evolución Molecular , Variación Genética , Humanos , Mycobacterium leprae/genética , Mycobacterium leprae/patogenicidad , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidad , Filogenia , Yersinia pestis/genética , Yersinia pestis/patogenicidad
7.
PLoS Biol ; 17(5): e3000255, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31112549

RESUMEN

Cell-cycle checkpoints and DNA repair processes protect organisms from potentially lethal mutational damage. Compared to other budding yeasts in the subphylum Saccharomycotina, we noticed that a lineage in the genus Hanseniaspora exhibited very high evolutionary rates, low Guanine-Cytosine (GC) content, small genome sizes, and lower gene numbers. To better understand Hanseniaspora evolution, we analyzed 25 genomes, including 11 newly sequenced, representing 18/21 known species in the genus. Our phylogenomic analyses identify two Hanseniaspora lineages, a faster-evolving lineage (FEL), which began diversifying approximately 87 million years ago (mya), and a slower-evolving lineage (SEL), which began diversifying approximately 54 mya. Remarkably, both lineages lost genes associated with the cell cycle and genome integrity, but these losses were greater in the FEL. E.g., all species lost the cell-cycle regulator WHIskey 5 (WHI5), and the FEL lost components of the spindle checkpoint pathway (e.g., Mitotic Arrest-Deficient 1 [MAD1], Mitotic Arrest-Deficient 2 [MAD2]) and DNA-damage-checkpoint pathway (e.g., Mitosis Entry Checkpoint 3 [MEC3], RADiation sensitive 9 [RAD9]). Similarly, both lineages lost genes involved in DNA repair pathways, including the DNA glycosylase gene 3-MethylAdenine DNA Glycosylase 1 (MAG1), which is part of the base-excision repair pathway, and the DNA photolyase gene PHotoreactivation Repair deficient 1 (PHR1), which is involved in pyrimidine dimer repair. Strikingly, the FEL lost 33 additional genes, including polymerases (i.e., POLymerase 4 [POL4] and POL32) and telomere-associated genes (e.g., Repressor/activator site binding protein-Interacting Factor 1 [RIF1], Replication Factor A 3 [RFA3], Cell Division Cycle 13 [CDC13], Pbp1p Binding Protein [PBP2]). Echoing these losses, molecular evolutionary analyses reveal that, compared to the SEL, the FEL stem lineage underwent a burst of accelerated evolution, which resulted in greater mutational loads, homopolymer instabilities, and higher fractions of mutations associated with the common endogenously damaged base, 8-oxoguanine. We conclude that Hanseniaspora is an ancient lineage that has diversified and thrived, despite lacking many otherwise highly conserved cell-cycle and genome integrity genes and pathways, and may represent a novel, to our knowledge, system for studying cellular life without them.


Asunto(s)
Ciclo Celular/genética , Reparación del ADN/genética , Genes Fúngicos , Filogenia , Saccharomycetales/citología , Saccharomycetales/genética , Secuencia de Bases , Daño del ADN/genética , Evolución Molecular , Fenotipo
8.
PLoS One ; 13(11): e0204322, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30383852

RESUMEN

BACKGROUND: Pseudogenes are non-functional sequences in the genome with homologous sequences that are functional (i.e. genes). They are abundant in eukaryotes where they have been extensively investigated, while in prokaryotes they are significantly scarcer and less well studied. Here we conduct a comprehensive analysis of the evolution of orthologs of Mycobacterium leprae pseudogenes in prokaryotes. The leprosy pathogen M. leprae is of particular interest since it contains an unusually large number of pseudogenes, comprising approximately 40% of its entire genome. The analysis is conducted in both broad and narrow phylogenetic ranges. RESULTS: We have developed an informatics-based approach to characterize the evolution of pseudogenes. This approach combines tools from phylogenomics, genomics, and transcriptomics. The results we obtain are used to assess the contributions of two mechanisms for pseudogene formation: failed horizontal gene transfer events and disruption of native genes. CONCLUSIONS: We conclude that, although it was reported that in most bacteria the former is most likely responsible for the majority of pseudogenization events, in mycobacteria, and in particular in M. leprae with its exceptionally high pseudogene numbers, the latter predominates. We believe that our study sheds new light on the evolution of pseudogenes in bacteria, by utilizing new methodologies that are applied to the unusually abundant M. leprae pseudogenes and their orthologs.


Asunto(s)
Genómica/métodos , Lepra/microbiología , Mycobacterium leprae/genética , Filogenia , Seudogenes , Evolución Molecular , Transferencia de Gen Horizontal , Genoma Bacteriano , Humanos
9.
Nucleic Acids Res ; 46(22): e134, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30184106

RESUMEN

The sequencing and comparative analysis of a collection of bacterial genomes from a single species or lineage of interest can lead to key insights into its evolution, ecology or epidemiology. The tool of choice for such a study is often to build a phylogenetic tree, and more specifically when possible a dated phylogeny, in which the dates of all common ancestors are estimated. Here, we propose a new Bayesian methodology to construct dated phylogenies which is specifically designed for bacterial genomics. Unlike previous Bayesian methods aimed at building dated phylogenies, we consider that the phylogenetic relationships between the genomes have been previously evaluated using a standard phylogenetic method, which makes our methodology much faster and scalable. This two-step approach also allows us to directly exploit existing phylogenetic methods that detect bacterial recombination, and therefore to account for the effect of recombination in the construction of a dated phylogeny. We analysed many simulated datasets in order to benchmark the performance of our approach in a wide range of situations. Furthermore, we present applications to three different real datasets from recent bacterial genomic studies. Our methodology is implemented in a R package called BactDating which is freely available for download at https://github.com/xavierdidelot/BactDating.


Asunto(s)
Teorema de Bayes , Evolución Molecular , Genoma Bacteriano , Modelos Genéticos , Filogenia , Benchmarking , Simulación por Computador , ADN Bacteriano/genética , Conjuntos de Datos como Asunto , Cadenas de Markov , Método de Montecarlo , Mycobacterium leprae/genética , Recombinación Genética , Shigella sonnei/genética , Programas Informáticos , Streptococcus pneumoniae/genética , Factores de Tiempo
10.
PLoS Pathog ; 14(5): e1006997, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29746563

RESUMEN

Studying ancient DNA allows us to retrace the evolutionary history of human pathogens, such as Mycobacterium leprae, the main causative agent of leprosy. Leprosy is one of the oldest recorded and most stigmatizing diseases in human history. The disease was prevalent in Europe until the 16th century and is still endemic in many countries with over 200,000 new cases reported annually. Previous worldwide studies on modern and European medieval M. leprae genomes revealed that they cluster into several distinct branches of which two were present in medieval Northwestern Europe. In this study, we analyzed 10 new medieval M. leprae genomes including the so far oldest M. leprae genome from one of the earliest known cases of leprosy in the United Kingdom-a skeleton from the Great Chesterford cemetery with a calibrated age of 415-545 C.E. This dataset provides a genetic time transect of M. leprae diversity in Europe over the past 1500 years. We find M. leprae strains from four distinct branches to be present in the Early Medieval Period, and strains from three different branches were detected within a single cemetery from the High Medieval Period. Altogether these findings suggest a higher genetic diversity of M. leprae strains in medieval Europe at various time points than previously assumed. The resulting more complex picture of the past phylogeography of leprosy in Europe impacts current phylogeographical models of M. leprae dissemination. It suggests alternative models for the past spread of leprosy such as a wide spread prevalence of strains from different branches in Eurasia already in Antiquity or maybe even an origin in Western Eurasia. Furthermore, these results highlight how studying ancient M. leprae strains improves understanding the history of leprosy worldwide.


Asunto(s)
Lepra/historia , Mycobacterium leprae/genética , ADN Bacteriano/genética , ADN Bacteriano/historia , Europa (Continente)/epidemiología , Evolución Molecular , Variación Genética , Genoma Bacteriano , Historia Medieval , Interacciones Huésped-Patógeno/genética , Humanos , Lepra/epidemiología , Lepra/microbiología , Mycobacterium leprae/clasificación , Mycobacterium leprae/patogenicidad , Filogenia , Filogeografía , Polimorfismo de Nucleótido Simple
11.
mBio ; 8(5)2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29042494

RESUMEN

Mycobacterium lepraemurium is the causative agent of murine leprosy, a chronic, granulomatous disease similar to human leprosy. Due to the similar clinical manifestations of human and murine leprosy and the difficulty of growing both bacilli axenically, Mycobacterium leprae and M. lepraemurium were once thought to be closely related, although it was later suggested that M. lepraemurium might be related to Mycobacterium avium In this study, the complete genome of M. lepraemurium was sequenced using a combination of PacBio and Illumina sequencing. Phylogenomic analyses confirmed that M. lepraemurium is a distinct species within the M. avium complex (MAC). The M. lepraemurium genome is 4.05 Mb in length, which is considerably smaller than other MAC genomes, and it comprises 2,682 functional genes and 1,139 pseudogenes, which indicates that M. lepraemurium has undergone genome reduction. An error-prone repair homologue of the DNA polymerase III α-subunit was found to be nonfunctional in M. lepraemurium, which might contribute to pseudogene formation due to the accumulation of mutations in nonessential genes. M. lepraemurium has retained the functionality of several genes thought to influence virulence among members of the MAC.IMPORTANCEMycobacterium lepraemurium seems to be evolving toward a minimal set of genes required for an obligatory intracellular lifestyle within its host, a niche seldom adopted by most mycobacteria, as they are free-living. M. lepraemurium could be used as a model to elucidate functions of genes shared with other members of the MAC. Its reduced gene set can be exploited for studying the essentiality of genes in related pathogenic species, which might lead to discovery of common virulence factors or clarify host-pathogen interactions. M. lepraemurium can be cultivated in vitro only under specific conditions and even then with difficulty. Elucidating the metabolic (in)capabilities of M. lepraemurium will help develop suitable axenic media and facilitate genetic studies.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Mycobacterium lepraemurium/genética , Filogenia , Análisis de Secuencia de ADN
12.
J Theor Biol ; 435: 116-124, 2017 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-28927812

RESUMEN

Mycobacterium is a pathogenic bacterium, which is a causative agent of tuberculosis (TB) and leprosy. These diseases are very crucial and become the cause of death of millions of people every year in the world. So, the characterize structure of membrane proteins of the protozoan play a vital role in the field of drug discovery because, without any knowledge about this Mycobacterium's membrane protein and their types, the scientists are unable to treat this pathogenic protozoan. So, an accurate and competitive computational model is needed to characterize this uncharacterized structure of mycobacterium. Series of attempts were carried out in this connection. Split amino acid compositions, Unbiased-Dipeptide peptide compositions (Unb-DPC), Over-represented tri-peptide compositions, compositions & translation were the few recent encoding techniques followed by different researchers in their publications. Although considerable results have been achieved by these models, still there is a gap which is filled in this study. In this study, an evolutionary feature extraction technique position specific scoring matrix (PSSM) is applied in order to extract evolutionary information from protein sequences. Consequently, 99.6% accuracy was achieved by the learning algorithms. The experimental results demonstrated that the proposed computational model will lead to develop a powerful tool for anti-mycobacterium drugs as well as play a promising rule in proteomic and bioinformatics.


Asunto(s)
Inteligencia Artificial , Proteínas Bacterianas/análisis , Proteínas de la Membrana/análisis , Mycobacterium/química , Posición Específica de Matrices de Puntuación , Secuencia de Aminoácidos , Biología Computacional/métodos , Evolución Molecular
13.
mBio ; 7(5)2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27703073

RESUMEN

Inteins are self-splicing protein elements that are mobile at the DNA level and are sporadically distributed across microbial genomes. Inteins appear to be horizontally transferred, and it has been speculated that phages may play a role in intein distribution. Our attention turns to mycobacteriophages, which infect mycobacteria, where both phage and host harbor inteins. Using bioinformatics, mycobacteriophage genomes were mined for inteins. This study reveals that these mobile elements are present across multiple mycobacteriophage clusters and are pervasive in certain genes, like the large terminase subunit TerL and a RecB-like nuclease, with the majority of intein-containing genes being phage specific. Strikingly, despite this phage specificity, inteins localize to functional motifs shared with bacteria, such that intein-containing genes have similar roles, like hydrolase activity and nucleic acid binding, indicating a global commonality among intein-hosting proteins. Additionally, there are multiple insertion points within active centers, implying independent invasion events, with regulatory implications. Several phage inteins were shown to be splicing competent and to encode functional homing endonucleases, important for mobility. Further, bioinformatic analysis supports the potential for phages as facilitators of intein movement among mycobacteria and related genera. Analysis of catalytic intein residues finds the highly conserved penultimate histidine inconsistently maintained among mycobacteriophages. Biochemical characterization of a noncanonical phage intein shows that this residue influences precursor accumulation, suggesting that splicing has been tuned in phages to modulate generation of important proteins. Together, this work expands our understanding of phage-based intein dissemination and evolution and implies that phages provide a context for evolution of splicing-based regulation. IMPORTANCE: Inteins are mobile protein splicing elements found in critical genes across all domains of life. Mycobacterial inteins are of particular interest because of their occurrence in pathogenic species, such as Mycobacterium tuberculosis and Mycobacterium leprae, which harbor inteins in important proteins. We have discovered a similarity in activities of intein-containing proteins among mycobacteriophages and their intein-rich actinobacterial hosts, with implications for both posttranslational regulation by inteins and phages participating in horizontal intein transfer. Our demonstration of multiple insertion points within active centers of phage proteins implies independent invasion events, indicating the importance of intein maintenance at specific functional sites. The variable conservation of a catalytic splicing residue, leading to profoundly altered splicing rates, points to the regulatory potential of inteins and to mycobacteriophages playing a role in intein evolution. Collectively, these results suggest inteins as posttranslational regulators and mycobacteriophages as both vehicles for intein distribution and incubators for intein evolution.


Asunto(s)
Transferencia de Gen Horizontal , Inteínas/genética , Micobacteriófagos/genética , Mycobacterium leprae/genética , Mycobacterium leprae/virología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/virología , Biología Computacional , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Regulación Viral de la Expresión Génica
14.
J Dermatol Sci ; 82(1): 18-27, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26805555

RESUMEN

BACKGROUND: Leprosy is an ancient chronic infection in the skin and peripheral nerves caused by Mycobacterium leprae. The development of leprosy depends on genetic background and the immune status of the host. However, there is no systematic view focusing on the biological pathways, interaction networks and overall expression pattern of leprosy-related immune and genetic factors. OBJECTIVES: To identify the hub genes in the center of leprosy genetic network and to provide an insight into immune and genetic factors contributing to leprosy. METHODS: We retrieved all reported leprosy-related genes and performed integrative analyses covering gene expression profiling, pathway analysis, protein-protein interaction network, and evolutionary analyses. RESULTS: A list of 123 differentially expressed leprosy related genes, which were enriched in activation and regulation of immune response, was obtained in our analyses. Cross-disorder analysis showed that the list of leprosy susceptibility genes was largely shared by typical autoimmune diseases such as lupus erythematosus and arthritis, suggesting that similar pathways might be affected in leprosy and autoimmune diseases. Protein-protein interaction (PPI) and positive selection analyses revealed a co-evolution network of leprosy risk genes. CONCLUSIONS: Our analyses showed that leprosy associated genes constituted a co-evolution network and might undergo positive selection driven by M. leprae. We suggested that leprosy may be a kind of autoimmune disease and the development of leprosy is a matter of defect or over-activation of body immunity.


Asunto(s)
Autoinmunidad/genética , Lepra/genética , Lepra/inmunología , Biología Computacional , Bases de Datos Genéticas , Evolución Molecular , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Estudios de Asociación Genética , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno , Humanos , Lepra/diagnóstico , Lepra/microbiología , Mycobacterium lepraemurium/inmunología , Fenotipo , Mapas de Interacción de Proteínas
15.
PLoS One ; 10(5): e0126008, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25946034

RESUMEN

Since its discovery in mammals as a key-hormone in reproduction and metabolism, leptin has been identified in an increasing number of tetrapods and teleosts. Tetrapods possess only one leptin gene, while most teleosts possess two leptin genes, as a result of the teleost third whole genome duplication event (3R). Leptin acts through a specific receptor (LEPR). In the European and Japanese eels, we identified two leptin genes, and for the first time in vertebrates, two LEPR genes. Synteny analyses indicated that eel LEPRa and LEPRb result from teleost 3R. LEPRb seems to have been lost in the teleost lineage shortly after the elopomorph divergence. Quantitative PCRs revealed a wide distribution of leptins and LEPRs in the European eel, including tissues involved in metabolism and reproduction. Noticeably, leptin1 was expressed in fat tissue, while leptin2 in the liver, reflecting subfunctionalization. Four-month fasting had no impact on the expression of leptins and LEPRs in control European eels. This might be related to the remarkable adaptation of silver eel metabolism to long-term fasting throughout the reproductive oceanic migration. In contrast, sexual maturation induced differential increases in the expression of leptins and LEPRs in the BPG-liver axis. Leptin2 was strikingly upregulated in the liver, the central organ of the reproductive metabolic challenge in teleosts. LEPRs were differentially regulated during sexual maturation, which may have contributed to the conservation of the duplicated LEPRs in this species. This suggests an ancient and positive role of the leptin system in the vertebrate reproductive function. This study brings new insights on the evolutionary history of the leptin system in vertebrates. Among extant vertebrates, the eel represents a unique case of duplicated leptins and leptin receptors as a result of 3R.


Asunto(s)
Anguilla/genética , Evolución Molecular , Duplicación de Gen , Leptina/genética , Receptores de Leptina/genética , Anguilla/clasificación , Anguilla/fisiología , Animales , Femenino , Peces/genética , Masculino , Filogenia , Maduración Sexual/genética , Especificidad de la Especie , Sintenía , Distribución Tisular
16.
Proc Natl Acad Sci U S A ; 112(14): 4459-64, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831531

RESUMEN

Mycobacterium lepromatosis is an uncultured human pathogen associated with diffuse lepromatous leprosy and a reactional state known as Lucio's phenomenon. By using deep sequencing with and without DNA enrichment, we obtained the near-complete genome sequence of M. lepromatosis present in a skin biopsy from a Mexican patient, and compared it with that of Mycobacterium leprae, which has undergone extensive reductive evolution. The genomes display extensive synteny and are similar in size (∼3.27 Mb). Protein-coding genes share 93% nucleotide sequence identity, whereas pseudogenes are only 82% identical. The events that led to pseudogenization of 50% of the genome likely occurred before divergence from their most recent common ancestor (MRCA), and both M. lepromatosis and M. leprae have since accumulated new pseudogenes or acquired specific deletions. Functional comparisons suggest that M. lepromatosis has lost several enzymes required for amino acid synthesis whereas M. leprae has a defective heme pathway. M. lepromatosis has retained all functions required to infect the Schwann cells of the peripheral nervous system and therefore may also be neuropathogenic. A phylogeographic survey of 227 leprosy biopsies by differential PCR revealed that 221 contained M. leprae whereas only six, all from Mexico, harbored M. lepromatosis. Phylogenetic comparisons indicate that M. lepromatosis is closer than M. leprae to the MRCA, and a Bayesian dating analysis suggests that they diverged from their MRCA approximately 13.9 Mya. Thus, despite their ancient separation, the two leprosy bacilli are remarkably conserved and still cause similar pathologic conditions.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Lepra/microbiología , Mycobacterium/genética , Biopsia , Mapeo Cromosómico/métodos , Mapeo Contig , ADN Bacteriano/genética , Genómica , Geografía , Humanos , México , Datos de Secuencia Molecular , Filogenia , Filogeografía , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Especificidad de la Especie
17.
Tuberculosis (Edinb) ; 95 Suppl 1: S140-4, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25773651

RESUMEN

Many tuberculosis and leprosy infections are latent or paucibacillary, suggesting a long time-scale for host and pathogen co-existence. Palaeopathology enables recognition of archaeological cases and PCR detects pathogen ancient DNA (aDNA). Mycobacterium tuberculosis and Mycobacterium leprae cell wall lipids are more stable than aDNA and restrict permeability, thereby possibly aiding long-term persistence of pathogen aDNA. Amplification of aDNA, using specific PCR primers designed for short fragments and linked to fluorescent probes, gives good results, especially when designed to target multi-copy loci. Such studies have confirmed tuberculosis and leprosy, including co-infections. Many tuberculosis cases have non-specific or no visible skeletal pathology, consistent with the natural history of this disease. M. tuberculosis and M. leprae are obligate parasites, closely associated with their human host following recent clonal distribution. Therefore genotyping based on single nucleotide polymorphisms (SNPs) can indicate their origins, spread and phylogeny. Knowledge of extant genetic lineages at particular times in past human populations can be obtained from well-preserved specimens where molecular typing is possible, using deletion analysis, microsatellite analysis and whole genome sequencing. Such studies have identified non-bovine tuberculosis from a Pleistocene bison from 17,500 years BP, human tuberculosis from 9000 years ago and leprosy from over 2000 years ago.


Asunto(s)
ADN Bacteriano/análisis , Evolución Molecular , Lepra/genética , Mycobacterium leprae/genética , Mycobacterium tuberculosis/genética , Tuberculosis/genética , Técnicas de Tipificación Bacteriana , Coinfección/complicaciones , Coinfección/genética , Coinfección/historia , ADN Bacteriano/genética , Genoma Bacteriano , Historia Antigua , Humanos , Lepra/complicaciones , Lepra/historia , Tipificación Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico , Paleopatología/métodos , Reacción en Cadena de la Polimerasa , Tuberculosis/complicaciones , Tuberculosis/historia
18.
mBio ; 5(6): e02020, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25370496

RESUMEN

UNLABELLED: Mycobacterial evolution involves various processes, such as genome reduction, gene cooption, and critical gene acquisition. Our comparative genome size analysis of 44 mycobacterial genomes revealed that the nonpathogenic (NP) genomes were bigger than those of opportunistic (OP) or totally pathogenic (TP) mycobacteria, with the TP genomes being smaller yet variable in size--their genomic plasticity reflected their ability to evolve and survive under various environmental conditions. From the 44 mycobacterial species, 13 species, representing TP, OP, and NP, were selected for genomic-relatedness analyses. Analysis of homologous protein-coding genes shared between Mycobacterium indicus pranii (NP), Mycobacterium intracellulare ATCC 13950 (OP), and Mycobacterium tuberculosis H37Rv (TP) revealed that 4,995 (i.e., ~95%) M. indicaus pranii proteins have homology with M. intracellulare, whereas the homologies among M. indicus pranii, M. intracellulare ATCC 13950, and M. tuberculosis H37Rv were significantly lower. A total of 4,153 (~79%) M. indicus pranii proteins and 4,093 (~79%) M. intracellulare ATCC 13950 proteins exhibited homology with the M. tuberculosis H37Rv proteome, while 3,301 (~82%) and 3,295 (~82%) M. tuberculosis H37Rv proteins showed homology with M. indicus pranii and M. intracellulare ATCC 13950 proteomes, respectively. Comparative metabolic pathway analyses of TP/OP/NP mycobacteria showed enzymatic plasticity between M. indicus pranii (NP) and M. intracellulare ATCC 13950 (OP), Mycobacterium avium 104 (OP), and M. tuberculosis H37Rv (TP). Mycobacterium tuberculosis seems to have acquired novel alternate pathways with possible roles in metabolism, host-pathogen interactions, virulence, and intracellular survival, and by implication some of these could be potential drug targets. IMPORTANCE: The complete sequence analysis of Mycobacterium indicus pranii, a novel species of Mycobacterium shown earlier to have strong immunomodulatory properties and currently in use for the treatment of leprosy, places it evolutionarily at the point of transition to pathogenicity. With the purpose of establishing the importance of M. indicus pranii in providing insight into the virulence mechanism of tuberculous and nontuberculous mycobacteria, we carried out comparative genomic and proteomic analyses of 44 mycobacterial species representing nonpathogenic (NP), opportunistic (OP), and totally pathogenic (TP) mycobacteria. Our results clearly placed M. indicus pranii as an ancestor of the M. avium complex. Analyses of comparative metabolic pathways between M. indicus pranii (NP), M. tuberculosis (TP), and M. intracellulare (OP) pointed to the presence of novel alternative pathways in M. tuberculosis with implications for pathogenesis and survival in the human host and identification of new drug targets.


Asunto(s)
Adaptación Biológica , Adaptación Fisiológica , Microbiología Ambiental , Variación Genética , Redes y Vías Metabólicas/genética , Mycobacterium/genética , Tuberculosis/microbiología , Proteínas Bacterianas/genética , Análisis por Conglomerados , Evolución Molecular , Genoma Bacteriano , Humanos , Mycobacterium/metabolismo , Mycobacterium/patogenicidad , Filogenia , Homología de Secuencia de Aminoácido
19.
BMC Genomics ; 15: 270, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24708363

RESUMEN

BACKGROUND: Leprosy has afflicted humankind throughout history leaving evidence in both early texts and the archaeological record. In Britain, leprosy was widespread throughout the Middle Ages until its gradual and unexplained decline between the 14th and 16th centuries. The nature of this ancient endemic leprosy and its relationship to modern strains is only partly understood. Modern leprosy strains are currently divided into 5 phylogenetic groups, types 0 to 4, each with strong geographical links. Until recently, European strains, both ancient and modern, were thought to be exclusively type 3 strains. However, evidence for type 2 strains, a group normally associated with Central Asia and the Middle East, has recently been found in archaeological samples in Scandinavia and from two skeletons from the medieval leprosy hospital (or leprosarium) of St Mary Magdalen, near Winchester, England. RESULTS: Here we report the genotypic analysis and whole genome sequencing of two further ancient M. leprae genomes extracted from the remains of two individuals, Sk14 and Sk27, that were excavated from 10th-12th century burials at the leprosarium of St Mary Magdalen. DNA was extracted from the surfaces of bones showing osteological signs of leprosy. Known M. leprae polymorphisms were PCR amplified and Sanger sequenced, while draft genomes were generated by enriching for M. leprae DNA, and Illumina sequencing. SNP-typing and phylogenetic analysis of the draft genomes placed both of these ancient strains in the conserved type 2 group, with very few novel SNPs compared to other ancient or modern strains. CONCLUSIONS: The genomes of the two newly sequenced M. leprae strains group firmly with other type 2F strains. Moreover, the M. leprae strain most closely related to one of the strains, Sk14, in the worldwide phylogeny is a contemporaneous ancient St Magdalen skeleton, vividly illustrating the epidemic and clonal nature of leprosy at this site. The prevalence of these type 2 strains indicates that type 2F strains, in contrast to later European and associated North American type 3 isolates, may have been the co-dominant or even the predominant genotype at this location during the 11th century.


Asunto(s)
Genoma Bacteriano , Lepra/microbiología , Mycobacterium leprae/genética , Arqueología , Huesos/microbiología , Epidemias , Evolución Molecular , Genotipo , Historia del Siglo XV , Historia del Siglo XVI , Historia Medieval , Humanos , Lepra/epidemiología , Lepra/historia , Mycobacterium leprae/clasificación , Mycobacterium leprae/aislamiento & purificación , Osteología , Filogenia , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Esqueleto , Reino Unido/epidemiología
20.
FEBS J ; 281(7): 1818-33, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24520955

RESUMEN

Oxygen transport in the hemolymph of many arthropods is mediated by hemocyanins, large copper-containing proteins that are well-studied in Chelicerata and Crustacea, but had long been considered unnecessary in the subphylum of Myriapoda. Only recently has it become evident that hemocyanins are present in Scutigeromorpha (Chilopoda) and Spirostreptida (Diplopoda). Here we present evidence for a more widespread occurrence of hemocyanin in the myriapods. By means of RT-PCR, western blotting and database searches, hemocyanins were identified in the symphylans Hanseniella audax and Symphylella vulgaris, the chilopod Scolopendra subspinipes dehaani and the diplopod Polydesmus angustus. No hemocyanins were found in the diplopods Polyxenus lagurus, Cylindroiulus punctatus, Glomeris marginata, Glomeris pustulata and Arthrosphaera brandtii, or the chilopods Lithobius forficatus, Geophilus flavus and Strigamia maritima. This suggests multiple independent losses in myriapod taxa. Two independent hemocyanin subunits were found that were already present in the myriapod stem line. We specifically investigated the structure of the hemocyanin of P. angustus, which consists of three distinct subunits that occur in an approximately equimolar ratio. As deduced by 3D electron microscopy, the quaternary structure is a 3 × 6-mer that resembles the half structure of the 6 × 6-mer hemocyanin from Scutigera coleoptrata. It was analyzed more closely by homology modeling of 1 × 6-mers and their rigid-body fitting to the electron density map of the 3 × 6-mer. In addition, we obtained the cDNA sequence of a putative myriapod phenoloxidase. Phenoloxidases are related to the arthropod hemocyanins, but diverged before radiation of the arthropod subphyla.


Asunto(s)
Artrópodos/química , Evolución Molecular , Hemocianinas/química , Secuencia de Aminoácidos , Animales , Artrópodos/genética , Hemocianinas/genética , Modelos Moleculares , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA